Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 332]
|
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что для любого натурального n найдётся натуральное число, десятичная запись квадрата которого начинается n единицами, а заканчивается какой-то комбинацией из n единиц и двоек.
|
|
|
Сложность: 5- Классы: 10,11
|
В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня
может проводить только один бой. Известно, что все боксёры имеют разную силу,
и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день
соревнований не изменяется.)
|
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что для любого k > 1 найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
(Например, 212 = ...96, 253 = ...992.)
|
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что существует бесконечно много натуральных n, для которых числитель несократимой дроби, равной 1 + ½ + ... + 1/n, не является степенью простого числа с натуральным показателем.
|
|
|
Сложность: 5- Классы: 8,9,10
|
Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
Страница:
<< 51 52 53 54
55 56 57 >> [Всего задач: 332]