Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 126]
|
|
Сложность: 2+ Классы: 5,6,7
|
В квадрате 4×4 нарисовано 15 точек Доказать, что из него можно вырезать квадратик 1×1, не содержащий внутри себя точек.
|
|
Сложность: 2+ Классы: 6,7,8
|
Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно
а) по 2 монеты; | б) по 3 монеты; | в) по 4 монеты; |
г) по 5 монет; | д) по 6 монет; | е) по 7 монет? |
(Разрешается класть монеты одну на другую.) В тех случаях, когда это возможно, нарисуйте, как это сделать. В остальных случаях докажите, что так расположить монеты нельзя.
|
|
Сложность: 3- Классы: 7,8,9
|
Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.
|
|
Сложность: 3- Классы: 7,8,9
|
В некоторых клетках шахматной доски стоят фигуры. Известно, что на каждой
горизонтали стоит хотя бы одна фигура, причём в разных горизонталях –
разное число фигур. Докажите, что всегда можно отметить 8 фигур так, чтобы в
каждой вертикали и каждой горизонтали стояла ровно одна отмеченная фигура.
|
|
Сложность: 3 Классы: 5,6,7,8
|
Квадратный лист бумаги разрезали на шесть кусков в форме выпуклых
многоугольников; пять кусков затерялись, остался один кусок в форме
правильного восьмиугольника (см. рисунок). Можно ли по одному этому
восьмиугольнику восстановить исходный квадрат?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 126]