ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



Задача 73786

Темы:   [ Перестройки ]
[ Полуинварианты ]
[ Индукция в геометрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 7,8,9

Автор: Шлейфер Р.

Дано n фишек нескольких цветов, причём фишек каждого цвета не более n/2. Докажите, что их можно расставить на окружности так, чтобы никакие две фишки одинакового цвета не стояли рядом.
Прислать комментарий     Решение


Задача 58268

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 5-
Классы: 8,9

Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.
Прислать комментарий     Решение


Задача 78571

Темы:   [ Процессы и операции ]
[ Соображения непрерывности ]
[ Задачи на движение ]
[ Принцип Дирихле (углы и длины) ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9,10,11

Посередине между двумя параллельными улицами стоят в один ряд одинаковые дома со стороной, равной a. Расстояние между улицами – 3a, а расстояние между двумя соседними домами – 2a (см. рис.).

Одна улица патрулируется полицейскими, которые движутся на расстоянии 9a друг от друга со скоростью v. К тому времени, как первый полицейский проходит мимо середины некоторого дома, точно напротив него на другой улице появляется гангстер. С какой постоянной скоростью и в какую сторону должен двигаться по этой улице гангстер, чтобы ни один полицейский его не заметил?

Прислать комментарий     Решение

Задача 58133

Темы:   [ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Свойства симметрий и осей симметрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 6
Классы: 8,9,10,11

Докажите, что симметризация по Штейнеру выпуклого многоугольника является выпуклым многоугольником.
Прислать комментарий     Решение


Задача 105131

Темы:   [ Разные задачи на разрезания ]
[ Подсчет двумя способами ]
[ Выпуклые многоугольники ]
[ Индукция в геометрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4
Классы: 8,9,10

Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .