Страница:
<< 70 71 72 73
74 75 76 >> [Всего задач: 401]
На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что FD ⊥ BC,
CG ⊥ EF, EC ⊥ BD, BF ⊥ EG. Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.
Дан остроугольный треугольник ABC. Точки B' и C'
симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.
|
|
Сложность: 4- Классы: 7,8,9
|
Вокруг равнобедренного треугольника ABC с основанием AC описана окружность ω. Точка F – ортоцентр треугольника ABC; продолжение высоты CE пересекает ω в точке G. Докажите, что высота AD является касательной к описанной окружности треугольника GBF.
В треугольнике KLM точка B — центр вписанной окружности, а
точка C — центр окружности, описанной около треугольника KLM.
Прямая BC перпендикулярна биссектрисе MB треугольника KLM.
Известно, что угол BMC равен . Найдите углы
треугольника KLM.
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.
Страница:
<< 70 71 72 73
74 75 76 >> [Всего задач: 401]