ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 173]      



Задача 53650

Темы:   [ Ромбы. Признаки и свойства ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 8,9

Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.

Прислать комментарий     Решение


Задача 53651

Темы:   [ Ромбы. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

Угол при вершине A ромба ABCD равен 60o. На сторонах AB и BC взяты соответственно точки M и N, причём AM = BN. Докажите, что треугольник MDN — равносторонний.

Прислать комментарий     Решение


Задача 54372

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Из вершины тупого угла ромба ABCD проведены высоты BM и BN. В четырёхугольник BMDN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$ABC = 2arctg2.

Прислать комментарий     Решение


Задача 54373

Темы:   [ Ромбы. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства касательной ]
Сложность: 4-
Классы: 8,9

Из вершины A острого угла ромба ABCD опущены перпендикуляры AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$BAC = 2arctg$ {\frac{1}{2}}$.

Прислать комментарий     Решение


Задача 55552

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4-
Классы: 8,9

В ромбе ABCD угол A равен 60o. Точки M и N лежат на сторонах CD и AD соответственно. Докажите, что если один из углов треугольника BMN равен равен 60o, то и остальные тоже равны по 60o.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 173]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .