ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]      



Задача 54274

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Формула Герона ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD известны основания AD = 24 и BC = 8 и диагонали AC = 13, BD = 5$ \sqrt{17}$. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54293

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD углы A и D при основании AD соответственно равны 60o и 30o. Точка N лежит на основании BC, причём BN : NC = 2. Точка M лежит на основании AD, прямая MN перпендикулярна основаниям трапециии и делит её площадь пополам. Найдите отношение AM : MD.

Прислать комментарий     Решение


Задача 54314

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
Сложность: 4-
Классы: 8,9

В трапеции основания равны 5 и 15, а диагонали — 12 и 16. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 54970

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Две прямые, параллельные основаниям трапеции, делят каждую из боковых сторон на три равные части. Вся трапеция разделена ими на три части. Найдите площадь средней части, если площади крайних равны S1 и S2.

Прислать комментарий     Решение


Задача 54279

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Площадь трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

Боковые стороны AB и CD трапеции ABCD равны соответственно 8 и 10, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .