Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 292]
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Докажите, что AX = AD.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Биссектрисы углов трапеции образуют при пересечении четырёхугольник с перпендикулярными диагоналями.
Докажите, что трапеция равнобокая.
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
|
|
Сложность: 3+ Классы: 9,10,11
|
B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин
другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.
Дан выпуклый четырёхугольник. Если провести в нём любую диагональ, он разделится на два равнобедренных треугольника. А если провести в нём обе диагонали сразу, он разделится на четыре равнобедренных треугольника. Обязательно ли этот четырёхугольник – квадрат?
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 292]