ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Докажите, что если два выпуклых четырёхугольника расположены так, что середины их сторон совпадают, то их площади равны.
Пусть a, b – натуральные числа и (a, b) = 1. Докажите, что величина Докажите, что для плоского графа справедливо неравенство 2E ≥ 3F.
В четырёхугольнике ABCD углы B и D — прямые. Диагональ AC образует со стороной AB острый угол в 40o, а со стороной AD -- угол в 30o. Найдите острый угол между диагоналями AC и BD.
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9. |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 241]
Даны два параллелограмма ABCD и
A1B1C1D1, у которых O и O1 —
точки пересечения диагоналей. Докажите равенство
Среди любых пяти узлов обычной клетчатой бумаги обязательно найдутся два, середина отрезка между которыми – тоже узел клетчатой бумаги. А какое минимальное количество узлов сетки из правильных шестиугольников необходимо взять, чтобы среди них обязательно нашлось два, середина отрезка между которыми – тоже узел этой сетки?
Даны точки A(- 2;0), B(1;6), C(5;4) и D(2; - 2). Докажите, что четырехугольник ABCD — прямоугольник.
Даны точки A(- 1;3), B(1; - 2), C(6;0) и D(4;5). Докажите, что четырёхугольник ABCD — квадрат.
Пусть M — точка пересечения медиан треугольника ABC, O —
произвольная точка. Докажите, что
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 241]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке