Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 241]      



Задача 57722

Тема:   [ Метод усреднения ]
Сложность: 5
Классы: 9,10

Даны два набора векторов a1,...,an и  b1,...,bm, причем сумма длин проекций векторов первого набора на любую прямую не больше суммы длин проекций векторов второго набора на ту же прямую. Докажите, что сумма длин векторов первого набора не больше суммы длин векторов второго набора.
Прислать комментарий     Решение


Задача 57723

Тема:   [ Метод усреднения ]
Сложность: 5
Классы: 9,10

Докажите, что если один выпуклый многоугольник лежит внутри другого, то периметр внутреннего многоугольника не превосходит периметра внешнего.
Прислать комментарий     Решение


Задача 57736

Тема:   [ Псевдоскалярное произведение ]
Сложность: 5
Классы: 8,9

Точки P1, P2 и P3, не лежащие на одной прямой, расположены внутри выпуклого 2n-угольника A1...A2n. Докажите, что если сумма площадей треугольников A1A2Pi, A3A4Pi,..., A2n - 1A2nPi равна одному и тому же числу c для i = 1, 2, 3, то для любой внутренней точки P сумма площадей этих треугольников равна c.
Прислать комментарий     Решение


Задача 57737

Тема:   [ Псевдоскалярное произведение ]
Сложность: 5
Классы: 8,9

Дан треугольник ABC и точка P. Точка Q такова, что CQ || AP, а точка R такова, что AR || BQ и  CR || BP. Докажите, что SABC = SPQR.
Прислать комментарий     Решение


Задача 66488

Тема:   [ Векторы помогают решить задачу ]
Сложность: 5
Классы: 8,9,10,11

На сторонах выпуклого шестиугольника $ABCDEF$ во внешнюю сторону построены правильные треугольники $ABC_1$, $BCD_1$, $CDE_1$, $DEF_1$, $EFA_1$ и $FAB_1$. Оказалось, что треугольник $B_1D_1F_1$ правильный. Докажите, что треугольник $A_1C_1E_1$ также правильный.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .