Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 241]      



Задача 35477

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 9,10

На плоскости нарисованы два квадрата - ABCD и KLMN (их вершины перечислены против часовой стрелки). Докажите, что середины отрезков AK, BL, CM, DN также являются вершинами квадрата.
Прислать комментарий     Решение


Задача 35556

Темы:   [ Стереометрия (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 10,11

Известно, что в тетраэдре две пары скрещивающихся ребер перепндикулярны. Докажите, что и третья пара скрещивающихся ребер обладает этим свойством.
Прислать комментарий     Решение


Задача 57079

Темы:   [ Правильные многоугольники ]
[ Неравенства с векторами ]
[ Центр масс ]
Сложность: 3
Классы: 9

Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть  a = + ... +   и  b = + ... + .
Может ли оказаться, что  |a| > |b| ?

Прислать комментарий     Решение

Задача 57080

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Момент инерции ]
Сложность: 3
Классы: 9

Правильный многоугольник  A1...An вписан в окружность радиуса R с центром O, X — произвольная точка.
Докажите, что   A1X² + ... + AnX² = n(R² + d²),  где  d = OX.

Прислать комментарий     Решение

Задача 111055

Темы:   [ Метод координат ]
[ Векторы помогают решить задачу ]
Сложность: 3
Классы: 8,9

На плоскости даны точки A(1;2) , B(2;1) , C(3;-3) , D(0;0) . Они являются вершинами выпуклого четырёхугольника ABCD . В каком отношении точка пересечения его диагоналей делит диагональ AC ?
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .