ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 345]      



Задача 66937

Тема:   [ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Дан прямоугольный треугольник $ABC$ с прямым углом $C$. Прямая проходящая через середину его высоты $CH$ и вершину $A$ пересекает $CB$ в точке $K$. Пусть $L$ – середина $BC$, а $T$ – точка на отрезке $AB$ такая, что $\angle ATK=\angle LTB$. Известно, что $BC=1$. Найдите периметр треугольника $KTL$.
Прислать комментарий     Решение


Задача 52489

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Наибольшая или наименьшая длина ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой  AN = BN.  Докажите, что точки A, B, M, N лежат на одной окружности.

Прислать комментарий     Решение

Задача 55164

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что  MA + MB > CA + CB.

Прислать комментарий     Решение

Задача 55632

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Точка M лежит на диаметре AB окружности. Хорда CD окружности проходит через точку M и пересекает прямую AB под углом в 45°.
Докажите, что величина  CM² + DM²  не зависит от выбора точки M.

Прислать комментарий     Решение

Задача 66995

Темы:   [ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Радиусы окружностей ]
Сложность: 3+
Классы: 8,9,10,11

На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 345]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .