|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть a и b — длины катетов прямоугольного треугольника, c — длина его гипотенузы. Докажите, что: а) радиус вписанной окружности треугольника равен (a + b - c)/2; б) радиус окружности, касающейся гипотенузы и продолжений катетов, равен (a + b + c)/2. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Из центра O окружности проведены n прямых (n — нечётно). С помощью циркуля и линейки постройте вписанный в окружность n-угольник, для которого данные прямые являются серединными перепендикулярами к n его сторонам.
На плоскости дано n прямых (n — нечётно), пересекающихся в одной точке. С помощью циркуля и линейки постройте n-угольник, для которого эти прямые являются биссектрисами внешних или внутренних углов.
Даны прямая l и точки A и B по одну сторону от неё.
Постройте путь луча из A в B, который отражается от прямой l по
следующему закону: угол падения на
С помощью циркуля и линейки впишите в данную окружность n-угольник, стороны которого соответственно параллельны n данным прямым.
С помощью циркуля и линейки постройте остроугольный треугольник по основаниям двух его высот и прямой, содержащей третью высоту.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|