ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]
На плоскости даны прямые l1, l2, ..., l2n, пересекающиеся в одной точке. Блоха сидит в некоторой точке M плоскости и прыгает через прямую l1, попадая в точку M1, причём M и M1 симметричны относительно прямой l1, далее — через прямую l2 и т.д. Докажите, что если через 2n прыжков блоха оказалась в точке М, то, начиная движение из любой точки плоскости, через 2n прыжков блоха окажется на прежнем месте.
ABC — данный разносторонний треугольник, A1, B1, C1 – точки касания его вписанной окружности со сторонами BC, AC, AB соответственно, A2, B2, C2 — точки, симметричные точкам A1, B1, C1 относительно биссектрис соответствующих углов треугольника ABC. Докажите, что A2C2 || AC
Две прямые на плоскости пересекаются под углом
Две прямые пересекаются под углом
а) Впишите в данную окружность n-угольник,
стороны которого параллельны заданным n прямым.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке