ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



Задача 115772

Темы:   [ Четырехугольники (прочее) ]
[ Композиции симметрий ]
[ Композиции поворотов ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9,10,11

Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы.

Прислать комментарий     Решение

Задача 55671

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
[ Вписанные и описанные многоугольники ]
Сложность: 5-
Классы: 8,9

Из центра O окружности проведены n прямых (n — нечётно). С помощью циркуля и линейки постройте вписанный в окружность n-угольник, для которого данные прямые являются серединными перепендикулярами к n его сторонам.

Прислать комментарий     Решение


Задача 55672

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
Сложность: 5-
Классы: 8,9

На плоскости дано n прямых (n — нечётно), пересекающихся в одной точке. С помощью циркуля и линейки постройте n-угольник, для которого эти прямые являются биссектрисами внешних или внутренних углов.

Прислать комментарий     Решение


Задача 55673

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
Сложность: 5
Классы: 8,9

С помощью циркуля и линейки впишите в данную окружность n-угольник, стороны которого соответственно параллельны n данным прямым.

Прислать комментарий     Решение


Задача 55675

Темы:   [ Симметрия и построения ]
[ Композиции симметрий ]
Сложность: 5
Классы: 8,9

На плоскости даны 2n - 1 прямая, окружность и точка K внутри окружности. С помощью циркуля и линейки впишите в окружность 2n-угольник, у которого одна сторона проходит через точку K, а остальные параллельны данным прямым.

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .