ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 289]      



Задача 65058

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.

Прислать комментарий     Решение

Задача 79553

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенства с модулями ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 4-
Классы: 9,10

Все значения квадратного трёхчлена  ax² + bx + c  на отрезке  [0, 1]  по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина  |a| + |b| + |c|?

Прислать комментарий     Решение

Задача 111049

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если  AB = 12  и  BE : EC = 4 : 5.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

Прислать комментарий     Решение

Задача 111050

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания  BC = 7  за точку B. Найдите BE, если  AE = 12.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

Прислать комментарий     Решение

Задача 115892

Темы:   [ Неравенства для элементов треугольника (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Белухов Н.

В треугольнике ABC  ∠A = 57<°,  ∠B = 61°,  ∠C = 62°.  Какой из двух отрезков длиннее: биссектриса угла A или медиана, проведённая из вершины B?

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .