Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 289]
В выпуклом четырёхугольнике ABCD некоторая точка диагонали АС принадлежит серединным перпендикулярам к сторонам АВ и CD, а некоторая точка диагонали BD принадлежит серединным перпендикулярам к сторонам AD и ВС. Докажите, что ABCD – прямоугольник.
|
|
Сложность: 4- Классы: 9,10
|
Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина |a| + |b| + |c|?
На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если AB = 12 и BE : EC = 4 : 5. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания BC = 7 за точку B. Найдите BE, если AE = 12. Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.
|
|
Сложность: 4- Классы: 8,9,10,11
|
В треугольнике ABC ∠A = 57<°, ∠B = 61°, ∠C = 62°. Какой из двух отрезков длиннее: биссектриса угла A или медиана, проведённая из вершины B?
Страница:
<< 47 48 49 50
51 52 53 >> [Всего задач: 289]