Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]
Докажите, что периметр остроугольного треугольника не
меньше 4
R.
Многоугольник (не обязательно выпуклый), вырезанный
из бумаги, перегибается по некоторой прямой и обе половинки
склеиваются. Может ли периметр полученного многоугольника быть больше,
чем периметр исходного?
В треугольник вписана окружность. Около неё описан квадрат. Докажите, что вне
треугольника лежит меньше половины периметра квадрата.
Из тридцати пунктов
A1,
A2, ...,
A30, расположенных на прямой
MN
на равных расстояниях друг от друга, выходят тридцать прямых дорог. Эти дороги
располагаются по одну сторону от прямой
MN и образуют с
MN следующие углы:
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
60o |
30o |
15o |
20o |
155o |
45o |
10o |
35o |
140o |
50o |
125o |
65o |
85o |
86o |
80o |
|
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
|
75o |
78o |
115o |
95o |
25o |
28o |
158o |
30o |
25o |
5o |
15o |
160o |
170o |
20o |
158o |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Из всех тридцати пунктов выезжают одновременно тридцать автомобилей, едущих,
никуда не сворачивая, по этим дорогам с одинаковой скоростью.
На каждом из перекрёстков установлено по шлагбауму. Как только первая по
времени машина проезжает перекрёсток, шлагбаум закрывается и преграждает путь
всем следующим машинам, попадающим на этот перекрёсток. Какие из машин
проедут все перекрёстки на своём пути, а какие застрянут?
Доказать, что в трапеции сумма углов при меньшем основании больше, чем при
большем.
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 35]