Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]
|
|
Сложность: 4- Классы: 10,11
|
Доказать, что в круге радиуса 1 нельзя найти более 5 точек, попарные
расстояния между которыми все больше 1.
Длины сторон выпуклого четырёхугольника не больше 7.
Докажите, что четыре круга с радиусами 5 и центрами
в вершинах четырёхугольника полностью покрывают
четырёхугольник.
|
|
Сложность: 4 Классы: 8,9,10
|
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.
|
|
Сложность: 4+ Классы: 9,10,11
|
Бесконечная плоская ломаная
A0A1...
An..., все углы которой прямые,
начинается в точке
A0 с координатами
x = 0,
y = 1 и обходит начало координат
O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно
биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает
одну из координатных осей и имеет наименьшую возможную при этом целочисленную
длину. Расстояние
OAn =
ln. Сумма длин первых
n звеньев ломаной равна
sn. Доказать, что найдётся
n, для которого
> 1958.
|
|
Сложность: 5+ Классы: 9,10,11
|
На плоскости дано конечное число полос, сумма ширин которых равна 100, и круг радиуса 1.
Докажите, что каждую из полос можно параллельно перенести так, чтобы все они вместе покрыли круг.
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]