ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 85]
На сторонах AB и CB треугольника ABC откладываются равные отрезки произвольной длины AD и CE. Найти геометрическое место середин отрезков DE.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
Имеются две параллельные прямые p1 и p2.
Точки A и B лежат на p1, а C – на p2. Будем перемещать отрезок BC параллельно самому себе и рассмотрим все треугольники ABC, полученные таким образом. Найдите геометрическое место точек, являющихся в этих треугольниках:
Дан треугольник ABC. Найдите геометрическое место точек P, для которых: а) треугольники APB и ABC равновелики; б) треугольники APB и APC равновелики; в) треугольники APB, APC и BPC равновелики.
На плоскости даны точки A и B . Найдите геометрическое место точек M , для которых разность квадратов длин отрезков AM и BM постоянна.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 85]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке