Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 111]      



Задача 54554

Темы:   [ Медиана, проведенная к гипотенузе ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9

Отрезок постоянной длины движется по плоскости так, что его концы скользят по сторонам прямого угла.
По какой траектории движется середина этого отрезка?

Прислать комментарий     Решение

Задача 54606

Темы:   [ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки через данную точку внутри круга проведите хорду, равную данному отрезку.

Прислать комментарий     Решение


Задача 54634

Темы:   [ ГМТ - прямая или отрезок ]
[ ГМТ - окружность или дуга окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Точка O лежит на отрезке AC. Найдите геометрическое место точек M, для которых  ∠MOC = 2∠MAC.

Прислать комментарий     Решение

Задача 116715

Темы:   [ Вписанные четырехугольники (прочее) ]
[ ГМТ - окружность или дуга окружности ]
[ Радикальная ось ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Четырёхугольник ABCD без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду AB, а другая – хорду CD, отметим их точку касания X. Докажите, что все такие точки X лежат на одной окружности.

Прислать комментарий     Решение

Задача 108557

Темы:   [ Метод координат на плоскости ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9

Даны точки A, B и положительное число d. Найдите геометрическое место точек M, для которых AM2 + BM2 = d.

Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .