ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 132]      



Задача 67311

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 7,8,9,10,11

Автор: Юран А.Ю.

Докажите, что среди вершин выпуклого девятиугольника можно найти три, образующие тупоугольный треугольник, ни одна сторона которого не совпадает со сторонами девятиугольника.
Прислать комментарий     Решение


Задача 78292

Темы:   [ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 8,9,10

Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.
Прислать комментарий     Решение


Задача 78656

Темы:   [ Вписанный угол равен половине центрального ]
[ Выпуклые многоугольники ]
Сложность: 3
Классы: 9,10

Можно ли вписать в окружность выпуклый семиугольник A1A2A3A4A5A6A7 с углами A1 = 140o, A2 = 120o, A3 = 130o, A4 = 120o, A5 = 130o, A6 = 110o, A7 = 150o?
Прислать комментарий     Решение


Задача 35048

Темы:   [ Системы точек ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 8,9

На плоскости даны пять точек, из которых никакие три не лежат на одной прямой.
Докажите, что некоторые четыре из этих точек являются вершинами выпуклого четырёхугольника.

Прислать комментарий     Решение

Задача 35203

Темы:   [ Поворот на $90^\circ$ ]
[ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10

Выпуклый многоугольник M переходит в себя при повороте на угол 900. Докажите, что найдутся два круга с отношением радиусов, равным 21/2, один из которых содержит M, а другой - содержится в M.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .