Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 1032]      



Задача 34892

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Последовательности (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд посажены 2000 деревьев - дубы и баобабы. К каждому дереву прибита табличка, на которой указано количество дубов среди следующих деревьев: дерева, на котором висит табличка, и его соседей. Можно ли по числам на табличках определить, какие из деревьев - дубы?
Прислать комментарий     Решение


Задача 67170

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7,8

Фигура «скрипач» бьёт клетку слева по стороне (локтем) и справа вверху по диагонали (смычком), если он правша, и, наоборот, правую клетку по стороне и левую верхнюю по диагонали, если левша (все скрипачи сидят лицом к нам). Посадите как можно больше «скрипачей» в «оркестр» 8×8 клеток, чтобы они не били друг друга. (Вы можете использовать любое количество как правшей, так и левшей.)

так бьёт правша
а так левша
Прислать комментарий     Решение

Задача 67175

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 6,7,8,9

В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?
Прислать комментарий     Решение


Задача 66370

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Можно ли заполнить таблицу 3×3 различными натуральными числами так, чтобы суммы в строках были равны между собой и произведения в столбцах также были равны между собой (но суммы не обязаны равняться произведениям).
Прислать комментарий     Решение


Задача 66377

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 4,5,6

Учительница написала на доске двузначное число и спросила Диму по очереди, делится ли оно на 2? на 3? на 4? … на 9? На все восемь вопросов Дима ответил верно, причём ответов «да» и «нет» было поровну.
а) Можете ли вы теперь ответить верно хотя бы на один из вопросов учительницы, не зная самого числа?
б) А хотя бы на два вопроса?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 1032]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .