Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 1027]
Существуют ли шесть таких последовательных натуральных чисел, что наименьшее
общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх
следующих?
|
|
Сложность: 3 Классы: 8,9,10
|
В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит
учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?
|
|
Сложность: 3 Классы: 6,7,8
|
Найдите 10 различных натуральных чисел, обладающих тем свойством, что их сумма
делится на каждое из них.
[Летучая ладья]
|
|
Сложность: 3 Классы: 7,8
|
На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле?
|
|
Сложность: 3 Классы: 6,7,8
|
Имеется два дома, в каждом по два подъезда. Жильцы держат кошек и собак,
причём доля кошек (отношение числа кошек к общему числу кошек и собак) в первом
подъезде первого дома больше доли кошек в первом подъезде второго дома, а
доля кошек во втором подъезде первого дома больше доли кошек во втором
подъезде второго дома. Верно ли, что доля кошек в первом доме больше доли кошек
во втором доме?
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 1027]