ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1027]      



Задача 116146

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8,9

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Прислать комментарий     Решение

Задача 116152

Темы:   [ Треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8

В треугольниках АВС и A1B1C1:  ∠А = ∠А1,  равны высоты, проведённые из вершин В и В1, а также равны медианы, проведённые из вершин С и С1. Обязательно ли эти треугольники равны?

Прислать комментарий     Решение

Задача 116583

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Фокусник выкладывает 36 карт в виде квадрата 6×6 (в 6 столбцов по 6 карт) и просит Зрителя мысленно выбрать карту и запомнить столбец, её содержащий. После этого Фокусник определённым образом собирает карты, снова выкладывает в виде квадрата 6×6 и просит Зрителя назвать номера столбцов, содержащих выбранную карту в первый и второй раз. После ответа Зрителя Фокусник безошибочно отгадывает карту. Как действовать Фокуснику, чтобы фокус гарантированно удался?

Прислать комментарий     Решение

Задача 116634

Темы:   [ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10

Для некоторых 2011 натуральных чисел выписали на доску все их 2011·1005 попарных сумм.
Могло ли оказаться, что ровно треть выписанных сумм делится на 3, и ещё ровно треть из них дают остаток 1 при делении на 3?

Прислать комментарий     Решение

Задача 116663

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .