Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1027]
|
|
Сложность: 3+ Классы: 10,11
|
Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?
|
|
Сложность: 3+ Классы: 9,10,11
|
По кругу записаны 100 целых чисел. Каждое из чисел больше суммы двух чисел, следующих за ним по часовой стрелке.
Какое наибольшее количество положительных чисел может быть среди записанных?
|
|
Сложность: 3+ Классы: 7,8,9
|
Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).
а) Придумайте выдающийся многоугольник из четырёх клеток.
б) При каких
n > 4 существует выдающийся многоугольник из
n клеток?
|
|
Сложность: 3+ Классы: 10,11
|
Натуральные числа A и B делятся на все натуральные числа от 1 до 65. На какое наименьшее натуральное число может не делиться число A + B?
|
|
Сложность: 3+ Классы: 7,8,9
|
Натуральное число n называется хорошим, если после приписывания его справа к любому натуральному числу получается число, делящееся на n. Запишите десять хороших чисел, которые меньше чем 1000.
Страница:
<< 71 72 73 74
75 76 77 >> [Всего задач: 1027]