ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1027]      



Задача 116027

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 7,8,9

На шахматной доске 8×8 стоит кубик (нижняя грань совпадает с одной из клеток доски). Его прокатили по доске, перекатывая через рёбра, так, что кубик побывал на всех клетках (на некоторых, возможно, несколько раз). Могло ли случиться, что одна из его граней ни разу не лежала на доске?

Прислать комментарий     Решение

Задача 116172

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Tреугольник разбили на пять треугольников, ему подобных. Bерно ли, что исходный треугольник – прямоугольный?

Прислать комментарий     Решение

Задача 116203

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?

Прислать комментарий     Решение

Задача 116233

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 11

Верно ли, что любые 100 карточек, на которых написано по одной цифре 1, 2 или 3, встречающейся не более чем по 50 раз каждая, можно разложить в один ряд так, чтобы в нём не было фрагментов 11, 22, 33, 123 и 321?

Прислать комментарий     Решение

Задача 116245

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 9,10,11

Существуют ли такие натуральные числа a, b, c, d, что  a³ + b³ + c³ + d³ = 100100 ?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .