Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 207]
Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что KL || O1O2.
В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые
OD и BI перпендикулярны. Докажите, что прямые ID и AC
параллельны.
Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию,
боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M?
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
В остроугольном треугольнике ABC проведена высота CH. Оказалось, что AH = BC.
Докажите, что биссектриса угла B, высота, опущенная из вершины A, и прямая, проходящая через точку H параллельно BC, пересекаются в одной точке.
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 207]