Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]
Из середины M стороны AC треугольника ABC опущены перпендикуляры MD и ME на стороны AB и BC соответственно. Около треугольников ABE и BCD описаны окружности. Докажите, что расстояние между центрами этих окружностей равно AC/4.
Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не
существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы
отрезок системы, равный и параллельный этому звену.
|
|
Сложность: 4- Классы: 9,10,11
|
Проекции многоугольника на ось
OX, биссектрису 1-го и 3-го координатных
углов, ось
OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3
, 5, 4
. Площадь многоугольника —
S. Доказать, что
S17, 5.
Докажите, что для любого треугольника проекция диаметра
описанной окружности, перпендикулярного одной стороне
треугольника, на прямую, содержащую вторую сторону, равна
третьей стороне.
В четырехугольнике ABCD острый угол между диагоналями равен
. Через каждую вершину проведена прямая, перпендикулярная
диагонали, не содержащей эту вершину. Найдите отношение площади
четырёхугольника, ограниченного этими прямыми, к площади
четырёхугольника ABCD.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]