Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 306]
B и C – две точки на сторонах угла с вершиной A.
Окружности с диаметрами AC и AB вторично пересекаются в точке D. Прямая AB вторично пересекает первую окружность в точке K, а прямая AC вторично пересекает вторую окружность в точке M. Докажите, что прямые BM, CK и AD пересекаются в одной точке.
Окружность, построенная на катете прямоугольного треугольника как на диаметре, делит гипотенузу в отношении 1 : 3. Найдите острые углы треугольника.
Даны две точки A и B. Найдите геометрическое место оснований
перпендикуляров, опущенных из точки A на прямые, проходящие через
точку B.
В окружности проведены диаметр MN и хорда AB, параллельная
диаметру MN. Касательная к окружности в точке M пересекает прямые
NA и NB соответственно в точках P и Q. Известно, что
MP = p, MQ = q. Найдите MN.
На катете BC прямоугольного треугольника ABC как на диаметре
построена окружность, пересекающая гипотенузу AB в точке P. Хорда
PQ параллельна катету BC. Прямая BQ пересекает катет AC в точке D. Известно, что AC = b, DC = d. Найдите BC.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 306]