Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1221]
|
|
Сложность: 3- Классы: 6,7,8
|
Дано 25 чисел. Сумма любых четырех из них положительна.
Докажите, что сумма их всех тоже положительна.
|
|
Сложность: 3- Классы: 7,8,9,10
|
Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?
В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть S1, S2, ..., S10 – суммы чисел, стоящих в столбцах таблицы.
Могло ли оказаться так, что среди чисел S1, S2, ..., S10 каждые два соседних различаются на 1?
У Сережи и у Лены есть несколько шоколадок, каждая весом не более 100 граммов. Как бы они ни поделили эти шоколадки, у одного из них суммарный вес шоколадок не будет превосходить 100 граммов. Какой наибольший суммарный вес могут иметь все шоколадки?
Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.
Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1221]