Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 1224]      



Задача 98508

Темы:   [ Процессы и операции ]
[ Теория алгоритмов ]
[ Обратный ход ]
Сложность: 3
Классы: 8,9

Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

Прислать комментарий     Решение

Задача 102828

Темы:   [ Симметрические системы. Инволютивные преобразования ]
[ Симметрические многочлены ]
[ Замена переменных ]
Сложность: 3
Классы: 7,8

Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

Прислать комментарий     Решение

Задача 103780

Темы:   [ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Неопределено ]
Сложность: 3
Классы: 6,7,8

Среди любых десяти из шестидесяти школьников найдётся три одноклассника. Обязательно ли среди всех шестидесяти школьников найдётся
  а) 15 одноклассников;
  б) 16 одноклассников?

Прислать комментарий     Решение

Задача 107736

Темы:   [ Обыкновенные дроби ]
[ Десятичная система счисления ]
[ Перебор случаев ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например,  49/98 = 4/8.  Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".

Прислать комментарий     Решение

Задача 109436

Темы:   [ Количество и сумма делителей числа ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

Найдите все нечётные натуральные числа, большие 500, но меньшие 1000, у каждого из которых сумма последних цифр всех делителей (включая 1 и само число) равна 33.

Прислать комментарий     Решение

Страница: << 168 169 170 171 172 173 174 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .