Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 696]      



Задача 110477

Темы:   [ Прямоугольные параллелепипеды ]
[ Векторы помогают решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Отношение объемов ]
Сложность: 4
Классы: 10,11

В прямоугольном параллелепипеде ABCDA1B1C1D1 ( ABCD и A1B1C1D1 – основания, AA1|| BB1|| CC1|| DD1 ) отрезки M1N1 , M2N2 , M3N3 – общие перпендикуляры к парам отрезков A1C1 и AB1 , BC1 и AC , DC1 и AD1 соответственно. Объём параллелепипеда равен V , радиус описанной сферы равен R , а сумма длин рёбер AA1 , AB и AD равна m . Найдите сумму объёмов пирамид AA1M1N1 , ABM2N2 и ADM3N3 .
Прислать комментарий     Решение


Задача 110478

Темы:   [ Прямоугольные параллелепипеды ]
[ Векторы помогают решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Отношение объемов ]
Сложность: 4
Классы: 10,11

В прямоугольном параллелепипеде ABCDA1B1C1D1 ( ABCD и A1B1C1D1 – основания, AA1|| BB1|| CC1|| DD1 ) отрезки M1N1 , M2N2 , M3N3 – общие перпендикуляры к парам отрезков A1D и AB1 , A1B и AC , BD и AD1 соответственно. Объём параллелепипеда равен V , радиус описанной сферы равен R , а сумма длин рёбер AA1 , AB и AD равна m . Найдите сумму объёмов пирамид AA1M1N1 , ABM2N2 и ADM3N3 .
Прислать комментарий     Решение


Задача 110510

Темы:   [ Объем помогает решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Сторона основания ABCD правильной пирамиды SABCD равна 8, высота SO равна 3. Точка M – середина ребра SB , точка K – середина ребра BC . Найдите: 1) объём пирамиды AMSK ; 2) угол между прямыми AM и SK ; 3) расстояние между прямыми AM и SK .
Прислать комментарий     Решение


Задача 110511

Темы:   [ Объем помогает решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Диагональ основания ABCD правильной пирамиды SABCD равна 8 , угол между боковой гранью и плоскостью основания равен arctg . Точка M – середина ребра SA , точка K – середина ребра AB . Найдите: 1) объём пирамиды DMSK ; 2) угол между прямыми DM и SK ; 3) расстояние между прямыми DM и SK .
Прислать комментарий     Решение


Задача 110512

Темы:   [ Объем помогает решить задачу ]
[ Расстояние между скрещивающимися прямыми ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Диагональ основания ABCD правильной пирамиды SABCD равна 8, высота SO пирамиды равна 1. Точка M – середина ребра SC , точка K – середина ребра CD . Найдите: 1) объём пирамиды BMSK ; 2) угол между прямыми BM и SK ; 3) расстояние между прямыми BM и SK .
Прислать комментарий     Решение


Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 696]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .