ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 1311]      



Задача 76449

Темы:   [ Формула включения-исключения ]
[ Делимость чисел. Общие свойства ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?
Прислать комментарий     Решение


Задача 77901

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Имеется 555 гирь весом: 1 г, 2 г, 3 г, 4 г,...555 г. Разложить их на 3 равные по весу кучи.
Прислать комментарий     Решение


Задача 77997

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Определить четырёхзначное число, если деление этого числа на однозначное производится по следующей схеме:

  × × × ×  ×  
  × ×      ×××  
      × ×    
      × ×    
             

а деление этого же числа на другое однозначное производится по такой схеме:

  × × × ×  ×  
    ×      ×××  
    × ×      
      ×      
      × ×    
      × ×    
             

Прислать комментарий     Решение

Задача 78277

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9

Даны n карточек; на обеих сторонах каждой карточки написано по одному из чисел 1, 2,..., n, причём так, что каждое число встречается на всех n карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа: 1, 2,..., n.
Прислать комментарий     Решение


Задача 78669

Тема:   [ Симметричная стратегия ]
Сложность: 3
Классы: 8,9

На плоскости отмечено 1968 точек, являющихся вершинами правильного 1968-угольника. Двое играют в следующую игру: каждый по очереди соединяет две вершины многоугольника отрезком, соблюдая следующие правила: нельзя соединять две точки, хотя бы одна из которых уже соединена с чем-то, и нельзя пересекать уже проведённые отрезки. Проигрывает тот, кто не может сделать очередного хода согласно этим правилам. Как нужно играть, чтобы выиграть? Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .