Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1311]
|
|
Сложность: 3 Классы: 5,6,7
|
Имеются 6 запертых чемоданов и 6 ключей к ним. При этом неизвестно, к какому чемодану подходит какой ключ. Какое наименьшее число попыток надо сделать, чтобы наверняка открыть все чемоданы? А сколько понадобится попыток, если ключей и чемоданов будет не по 6, а по 10?
Три человека A, B, C пересчитали кучу шариков четырёх цветов (см. таблицу).
При этом каждый из них правильно различал какие-то два цвета, а два других мог путать: один путал красный и оранжевый, другой – оранжевый и жёлтый, а третий – жёлтый и зелёный. Результаты их подсчётов приведены в таблице. Сколько каких шариков было на самом деле?
|
|
Сложность: 3 Классы: 5,6,7,8
|
Семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама – за 2, малыш – за 5, а бабушка – за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя.)
|
|
Сложность: 3 Классы: 7,8,9
|
В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и "выходной" день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый – по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней
а) 5 человек? б) 8 человек?
На острове Контрастов живут и рыцари, и лжецы. Рыцари всегда говорят правду, лжецы всегда лгут. Некоторые жители заявили, что на острове чётное число рыцарей, а остальные заявили, что на острове нечётное число лжецов. Может ли число жителей острова быть нечётным?
Страница:
<< 69 70 71 72
73 74 75 >> [Всего задач: 1311]