ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1311]      



Задача 89944

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 6,7

На острове живут рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. Путник встретил троих островитян и спросил каждого из них: «Сколько рыцарей среди твоих спутников?». Первый ответил: «Ни одного». Второй сказал: «Один». Что сказал третий?
Прислать комментарий     Решение


Задача 89949

Тема:   [ Ребусы ]
Сложность: 3
Классы: 6,7,8

Расшифруйте ребус. Все цифры, обозначенные буквой Ч, — четные (не обязательно равные); все цифры, обозначенные буквой Н, — нечетные (тоже не обязательно равные).

ребус

Прислать комментарий     Решение

Задача 97860

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин С.В.

Имеется 68 монет, причём известно, что любые две монеты различаются по весу.
За 100 взвешиваний на двухчашечных весах без гирь найти самую тяжелую и самую лёгкую монеты.

Прислать комментарий     Решение

Задача 97880

 [Игра "кошки-мышки"]
Темы:   [ Симметричная стратегия ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 7,8,9

Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?

Прислать комментарий     Решение

Задача 98105

Темы:   [ Отношение порядка ]
[ Деревья ]
[ Принцип крайнего (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8

В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона. Какое наибольшее число баронов могло быть при этих условиях?
(В королевстве действовал закон: "вассал моего вассала – не мой вассал".)

Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .