ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 353]      



Задача 103749

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6,7

Автор: Ботин Д.А.

Знайка пришёл в гости к братьям-близнецам Винтику и Шпунтику, зная, что один из них никогда не говорит правду, и спросил одного из них: ''Ты Винтик?'' ''Да,'' — ответил тот. Когда Знайка спросил об этом же второго, то получил столь же чёткий ответ и сразу определил, кто есть кто.

Кого звали Винтиком?
Прислать комментарий     Решение


Задача 103869

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Решите ребус:  БАО×БА×Б = 2002.

Прислать комментарий     Решение

Задача 109423

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7

В конце четверти Вовочка выписал подряд в строчку свои текущие отметки по пению и поставил между некоторыми из них знак умножения. Произведение получившихся чисел оказалось равным 2007. Какая отметка выходит у Вовочки в четверти по пению? ("Колов" учительница пения не ставит.)

Прислать комментарий     Решение

Задача 115492

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР  трёхзначные числа, разные буквы обозначают различные цифры.)
Прислать комментарий     Решение


Задача 116063

Тема:   [ Ребусы ]
Сложность: 2+
Классы: 5,6

Автор: Шноль Д.Э.

Найдите все решения ребуса  Я + ОН + ОН + ОН + ОН + ОН + ОН + ОН + ОН = МЫ.
(Одинаковыми буквами зашифрованы одинаковые цифры, разными разные.)

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 353]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .