ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 348]      



Задача 116319

Темы:   [ Прямоугольные параллелепипеды ]
[ Сфера, вписанная в двугранный угол ]
Сложность: 4
Классы: 10,11

Точка O расположена в сечении ACC'A' прямоугольного параллелепипеда ABCDA'B'C'D' размером 2× 3× 6 так, что OCB + OCD + OCC' = 180o . Сфера с центром в точке O касается плоскостей A'B'C' , CC'D и не имеет общих точек с плоскостью BB'C . Найдите расстояние от точки O до этой плоскости.
Прислать комментарий     Решение


Задача 116320

Темы:   [ Прямоугольные параллелепипеды ]
[ Сфера, вписанная в двугранный угол ]
Сложность: 4
Классы: 10,11

Точка O расположена в сечении BB'D'D прямоугольного параллелепипеда ABCDA'B'C'D' размером 3× 4× 8 так, что OBA + OBC + OBB' = 180o . Сфера с центром в точке O касается плоскостей A'B'C' , BB'C и не имеет общих точек с плоскостью BB'A . Найдите расстояние от точки O до этой плоскости.
Прислать комментарий     Решение


Задача 116321

Темы:   [ Прямоугольные параллелепипеды ]
[ Сфера, вписанная в двугранный угол ]
Сложность: 4
Классы: 10,11

Точка O расположена в сечении BDD'B' прямоугольного параллелепипеда ABCDA'B'C'D' размером 4× 6× 9 так, что ODA + ODC + ODD' = 180o . Сфера с центром в точке O касается плоскостей A'B'C' , DD'A и не имеет общих точек с плоскостью DD'C . Найдите расстояние от точки O до этой плоскости.
Прислать комментарий     Решение


Задача 116224

Темы:   [ Параллелепипеды (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 4
Классы: 10

Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются.

Прислать комментарий     Решение

Задача 64989

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10,11

Есть лист жести размером 6×6. Разрешается надрезать его, но так, чтобы он не распадался на части, и сгибать.
Как сделать куб с ребром 2, разделённый перегородками на единичные кубики?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .