ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 348]      



Задача 65435

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Куб, стоящий на плоскости, несколько раз перекатили через его рёбра, после чего он вернулся на прежнее место.
Обязательно ли он стоит на той же грани?

Прислать комментарий     Решение

Задача 77991

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 78151

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Куб ]
Сложность: 3
Классы: 8,9

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?
Прислать комментарий     Решение


Задача 86941

Темы:   [ Свойства сечений ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Через середины M и N рёбер соответственно AA1 и C1D1 параллелепипеда ABCDA1B1C1D1 проведена плоскость параллельно диагонали BD основания. Постройте сечение параллелепипеда этой плоскостью. В каком отношении она делит диагональ A1C ?
Прислать комментарий     Решение


Задача 86975

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
Сложность: 3
Классы: 8,9

Дан куб ABCDA1B1C1D1 с ребром a . а) Докажите, что AA1 и BC – скрещивающиеся прямые; б) постройте их общий перпендикуляр; в) найдите расстояние между этими прямыми.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .