ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 348]      



Задача 111123

Темы:   [ Ортогональное проектирование ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 10,11

Ортогональные проекции отрезка на три попарно перпендикулярные прямые равны 1, 2 и 3. Найдите длину этого отрезка.
Прислать комментарий     Решение


Задача 111137

Темы:   [ Параллельное проектирование ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Пусть проекция вершины A параллелепипеда ABCDA1B1C1D1 на некоторую плоскость лежит внутри проекции на эту плоскость треугольника A1BD . Докажите, что площадь проекции параллелепипеда в два раза больше площади проекции треугольника A1BD .
Прислать комментарий     Решение


Задача 34917

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3+
Классы: 10,11

На какое наименьшее число тетраэдров можно разбить куб?

Прислать комментарий     Решение

Задача 64555

Темы:   [ Правильная пирамида ]
[ Куб ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема косинусов ]
[ Скалярное произведение ]
[ Векторы помогают решить задачу ]
Сложность: 3+

Дана правильная треугольная пирамида SABC, ребро основания которой равно 1. Из вершин A и B основания ABC проведены медианы боковых граней, не имеющие общих точек. Известно, что на прямых, содержащих эти медианы, лежат рёбра некоторого куба. Найдите длину бокового ребра пирамиды.

Прислать комментарий     Решение

Задача 65449

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Докажите, что найдутся три мухи, которые в начальном и конечном положении сидели в вершинах равных треугольников.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .