Версия для печати
Убрать все задачи
В каждую клетку бесконечного листа клетчатой бумаги вписано некоторое число так, что сумма чисел в любом квадрате, стороны которого идут по линиям сетки, по модулю не превосходит единицы.
а) Докажите существование такого числа c, что сумма чисел в любом прямоугольнике, стороны которого идут по линиям сетки, не больше c; другими словами, докажите, что суммы чисел в прямоугольниках ограничены.
б) Докажите, что можно взять c = 4.
в) Улучшите эту оценку – докажите, что утверждение верно для c = 3.
г) Постройте пример, показывающий, что при c > 3 утверждение неверно.
Решение