Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 275]
|
|
Сложность: 3+ Классы: 10,11
|
На доске написано выражение , где a, b, c, d, e, f – натуральные числа. Если число a увеличить на 1, то значение этого выражения увеличится на 3. Если в исходном выражении увеличить число c на 1, то его значение увеличится на 4; если же в исходном выражении увеличить число e на 1, то его значение увеличится на 5. Какое наименьшее значение может иметь произведение bdf?
|
|
Сложность: 3+ Классы: 10,11
|
Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.
На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?
|
|
Сложность: 3+ Классы: 9,10,11
|
Известно, что клетчатый квадрат можно разрезать на n одинаковых фигурок из k клеток.
Докажите, что его можно разрезать и на k одинаковых фигурок из n клеток.
Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 275]