ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 275]      



Задача 66741

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Предел последовательности, сходимость ]
[ НОД и НОК. Взаимная простота ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа $a$ и $b$ таковы, что  $a^{n+1} + b^{n+1}$  делится на  $a^n+b^n$  для бесконечного множества различных натуральных $n$. Обязательно ли тогда  $a = b$?

Прислать комментарий     Решение

Задача 73687

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и  a > 1.
Докажите, что если  am + bm  делится на  an + bn,  то m делится на n.

Прислать комментарий     Решение

Задача 76543

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  ...,  n + 9  есть хотя бы одно, взаимно простое с остальными девятью.

Прислать комментарий     Решение

Задача 78042

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x³ – 2y³ – 4z³ = 0.

Прислать комментарий     Решение

Задача 78267

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

a, b, p – любые целые числа. Доказать, что найдутся такие взаимно простые k, l, что  ak + bl  делится на p.

Прислать комментарий     Решение

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .