ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 275]      



Задача 64722

Темы:   [ Обход графов ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Пахарев А.

Дано несколько белых и несколько чёрных точек. Из каждой белой точки идет стрелка в каждую чёрную, на каждой стрелке написано натуральное число. Известно, что если пройти по любому замкнутому маршруту, то произведение чисел на стрелках, идущих по направлению движения, равно произведению чисел на стрелках, идущих против направления движения. Обязательно ли можно поставить в каждой точке натуральное число так, чтобы число на каждой стрелке равнялось произведению чисел на её концах?

Прислать комментарий     Решение

Задача 78839

Темы:   [ Ряд Фарея ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
[ Теорема Пика ]
Сложность: 4
Классы: 8,9,10,11

Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что  |bc – ad| = 1.

Прислать комментарий     Решение

Задача 97970

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
[ Числа Фибоначчи ]
Сложность: 4
Классы: 7,8,9

Рассматривается последовательность слов из букв "A" и "B". Первое слово – "A", второе – "B". k-е слово получается приписыванием к (k–2)-му слову справа (k–1)-го (так что начало последовательности имеет вид:  "A", "B", "AB", "BAB", "ABBAB", ...).  Может ли в последовательности встретиться "периодическое" слово, то есть слово, состоящее из нескольких (по меньшей мере двух) одинаковых кусков, идущих друг за другом, и только из них?

Прислать комментарий     Решение

Задача 105141

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 9,10,11

В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.

Прислать комментарий     Решение

Задача 105149

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9

Боря задумал целое число, большее 100. Кира называет целое число, большее 1. Если Борино число делится на это число, Кира выиграла, иначе Боря вычитает из своего числа названное, и Кира называет следующее число. Ей запрещается повторять числа, названные ранее. Если Борино число станет отрицательным – Кира проигрывает. Есть ли у неё выигрышная стратегия?

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .