Страница:
<< 1 2 3 [Всего задач: 13]
|
|
Сложность: 3+ Классы: 8,9,10
|
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
а) Докажите, что если a1 рационально, то
последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого
места, периодическая, то a1 рационально.
|
|
Сложность: 3+ Классы: 8,9,10
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда x1 рационально.
|
|
Сложность: 4 Классы: 7,8,9
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
а) Докажите, что последовательность, начиная с некоторого места, периодическая в том и только в том случае, когда x1 рационально.
б) Сколько существует значений x1, для которых эта последовательность – периодическая с периодом T (для каждого T = 2, 3, ...)?
Страница:
<< 1 2 3 [Всего задач: 13]