Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 138]
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что для любого натурального n сумма лежит в
пределах от ½ до ¾.
|
|
Сложность: 3+ Классы: 9,10
|
По кругу расставлено 2n действительных чисел, сумма которых положительна. Для каждого из них рассмотрим обе группы из n подряд стоящих чисел, в которых это число является крайним. Докажите, что найдётся число,
для которого сумма чисел в каждой из двух таких групп положительна.
|
|
Сложность: 3+ Классы: 9,10,11
|
Бессмертная блоха прыгает по целым точкам на числовой прямой, стартуя с точки
0. Длина первого прыжка равна 3, второго – 5, третьего – 9,
и так далее (длина k-го прыжка равна 2k + 1). Направление прыжка (вправо или влево) блоха выбирает самостоятельно. Может ли так случиться, что блоха рано или поздно побывает в каждой натуральной точке (возможно, побывав в некоторых точках больше, чем по разу)?
|
|
Сложность: 3+ Классы: 7,8,9
|
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов
минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
|
|
Сложность: 3+ Классы: 8,9,10
|
Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 138]