Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 149]
|
|
Сложность: 4 Классы: 10,11
|
Известно, что cos α° = 1/3. Является ли α рациональным числом?
|
|
Сложность: 4 Классы: 10,11
|
Пользуясь теоремой о рациональных корнях многочлена (см. задачу 61013), докажите, что если p/q рационально и cos (p/q)° ≠ 0, ±½, ±1, то
cos (p/q)° – число иррациональное.
|
|
Сложность: 4 Классы: 9,10,11
|
а) Используя геометрические соображения,
докажите, что основание и боковая сторона равнобедренного
треугольника с углом
36o при вершине несоизмеримы.
б) Придумайте геометрическое доказательство иррациональности
.
|
|
Сложность: 4 Классы: 10,11
|
Хозяин обещает работнику платить в среднем
рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к
Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.
|
|
Сложность: 4 Классы: 8,9,10
|
Числовая последовательность определяется условиями:
Докажите, что среди членов этой последовательности бесконечно много полных
квадратов.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 149]