|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2. В треугольной пирамиде PABC боковое ребро PB перпендикулярно плоскости основания ABC , PB = 6 , AB = BC = У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль
ровно девятерым (по своему выбору). Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка –
в 5 и 8 л. Попробуйте, пользуясь этими бочонками: На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой? Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход. Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 6035]
В турнире участвовали шесть шахматистов. Каждые два участника турнира сыграли между собой по одной партии. Сколько всего было сыграно партий? Сколько партий сыграл каждый участник? Сколько очков набрали шахматисты все вместе?
Можно ли доску размером 5×5 заполнить доминошками размером 1×2?
а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 6035] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|