Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 1113]      



Задача 105073

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 7,8,9,10

В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Прислать комментарий     Решение

Задача 105103

Темы:   [ Задачи на проценты и отношения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Вялый М.Н.

В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?

Прислать комментарий     Решение

Задача 105172

Темы:   [ Задачи на проценты и отношения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9

Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?

Прислать комментарий     Решение

Задача 107801

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

Прислать комментарий     Решение

Задача 108969

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9

Расстояние между пунктами A и B равно 40 км. Пешеход вышел из A в 4 часа. Когда он прошёл половину пути, его догнал велосипедист, который выехал из A в 7:20. Через час после этого пешеход встретил другого велосипедиста, который выехал из B в 8:30. Скорости велосипедистов одинаковы. Определить скорость пешехода.

Прислать комментарий     Решение


Страница: << 94 95 96 97 98 99 100 >> [Всего задач: 1113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .