Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1119]
В футбольном турнире участвовало 8 команд, причём каждая сыграла с каждой ровно по одному разу. Известно, что каждые две команды, сыгравшие между собой вничью, набрали в итоге разное число очков. Найдите наибольшее возможное общее число ничьих в этом турнире. (За выигрыш матча команде начисляется 3 очка, за ничью – 1, за поражение – 0.)
Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке?
Петя записал 25 чисел в клетки квадрата 5×5. Известно, что их сумма равна 500. Вася может попросить его назвать сумму чисел в любой клетке и всех
её соседях по стороне. Может ли Вася за несколько таких вопросов узнать, какое число записано в центральной клетке?
Кабинки горнолыжного подъёмника занумерованы подряд числами от 1 до 99. Игорь сел в кабинку №42 подъёмника у подножия горы и в какой-то момент заметил, что он поравнялся с движущейся вниз кабинкой №13 (см. рисунок), а через 15 секунд его кабинка поравнялась с кабинкой №12.
Через какое время Игорь прибудет на вершину горы?
Среди 25 жирафов, каждые два из которых различного роста, проводится конкурс "Кто выше?". За один раз на сцену выходят пять жирафов, а жюри справедливо (согласно росту) присуждает им места с первого по пятое. Каким образом надо организовать выходы жирафов, чтобы после семи выходов определить первого, второго и третьего призёров конкурса?
Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 1119]