ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 1110]      



Задача 67045

Тема:   [ Шахматные доски и шахматные фигуры ]
Сложность: 4-
Классы: 9,10,11

В белом клетчатом квадрате 2021×2021 требуется закрасить чёрным две клетки. После этого через каждую минуту одновременно закрашиваются чёрным все клетки, которые граничат по стороне хоть с одной из уже закрашенных. Ваня выбрал две начальные клетки так, чтобы весь квадрат закрасился как можно быстрее. Через сколько минут закрасился квадрат?

Прислать комментарий     Решение

Задача 67065

Темы:   [ Таблицы и турниры (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

В белом клетчатом квадрате 100×100 закрашено чёрным несколько клеток (не обязательно соседних). В каждой горизонтали или вертикали, где есть чёрные клетки, их количество нечётно, так что одна из клеток – средняя по счёту. Все чёрные клетки, средние по горизонтали, стоят в разных вертикалях. Все чёрные клетки, средние по вертикали, стоят в разных горизонталях.
  а) Докажите, что найдётся клетка, средняя и по горизонтали, и по вертикали.
  б) Обязательно ли каждая клетка, средняя по горизонтали – средняя и по вертикали?

Прислать комментарий     Решение

Задача 77943

Темы:   [ Задачи на движение ]
[ Малые шевеления ]
Сложность: 4-
Классы: 9

Два человека A и B должны попасть как можно скорее из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы время, затраченное A и B на дорогу в N, было наименьшим? (C идёт пешком с той же скоростью, что A и B; время, затраченное на дорогу, считается от момента выхода A и B из M до момента прибытия последнего из них в N.)
Прислать комментарий     Решение


Задача 77994

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10

На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.

Прислать комментарий     Решение

Задача 78082

Темы:   [ Числовые таблицы и их свойства ]
[ Осевая и скользящая симметрии (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 9

64 неотрицательных числа, сумма которых равна 1956, расположены в форме квадратной таблицы по восемь чисел в каждой строке и в каждом столбце. Сумма чисел, стоящих на двух диагоналях, равна 112. Числа, расположенные симметрично относительно любой диагонали, равны. Докажите, что сумма чисел в любой строке меньше 518.

Прислать комментарий     Решение

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .