Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 536]
|
|
Сложность: 3 Классы: 6,7,8
|
Пять футбольных команд провели турнир – каждая команда сыграла с каждой по разу. За победу начислялось 3 очка, за ничью – 1 очко, за проигрыш очков не давалось. Четыре команды набрали соответственно 1, 2, 5 и 7 очков. А сколько очков набрала пятая команда?
|
|
Сложность: 3 Классы: 6,7,8
|
На клетчатой бумаге нарисован прямоугольник шириной 200 и высотой 100 клеток. Его закрашивают по клеткам, начав с левой верхней и идя по спирали (дойдя до края или уже закрашенной части, поворачивают направо, см. рис.). Какая клетка будет закрашена последней? (Укажите номер её строки и столбца. Например, нижняя правая клетка стоит в 100-й строке и 200-м столбце.)
|
|
Сложность: 3 Классы: 6,7,8
|
В клетках таблицы 3×3 расставлены числа так, что сумма чисел в каждом столбце и в каждой строке равна нулю. Какое наименьшее количество чисел, отличных от нуля, может быть в этой таблице, если известно, что оно нечётно?
|
|
Сложность: 3 Классы: 6,7,8
|
Можно ли так расставить фишки в клетках доски 8×8, чтобы в каждых двух столбцах количество фишек было одинаковым, а в каждых двух строках – различным?
|
|
Сложность: 3 Классы: 7,8,9
|
Числа от 1 до 9 разместите в кружках фигуры (см. рис.) так, чтобы сумма четырёх чисел, находящихся в кружках-вершинах всех квадратов (их шесть), была постоянной.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 536]